sabato 31 marzo 2018
venerdì 30 marzo 2018
giovedì 29 marzo 2018
STUDIO SPERIMENTALE DEL MOTO ARMONICO
Si
può verificare sperimentalmente che il
moto oscillatorio di una massa attaccata a una molla può essere considerato come
proiezione di un moto circolare
uniforme su un piano ortogonale alla circonferenza.
Allungando o comprimendo la molla, la massa
appesa, sotto l'azione della forza elastica oscilla intorno alla
posizione centrale di equilibrio.
Cronometrando il tempo di 10 oscillazioni
complete (come minimo, per ridurre l'errore) e dividendolo per il loro numero, potremo ottenere
il valore del periodo
T, cioè della durata di una oscillazione da
un estremo all'estremo stesso.
Potremo anche verificare che non varia al
variare dell'ampiezza dell'oscillazione, pur di non
superare i limiti di elasticità della molla (ISOCRONISMO).
Passiamo ora allo studio sperimentale del legame
esistente fra periodo e massa m oscillante.
Ecco i risultati di vecchie misure :
Successivamente si è studiata la dipendenza del periodo dalla costante della molla, per cui si è utilizzata una sola massa appendendola a molle di diversa costante elastica.
Nella (4)
non compare il
raggio ' R ' (ampiezza del moto
armonico).
Quindi, fissati
i valori della massa ' m ' e della costante
' k ' della molla, le oscillazioni armoniche sono ISOCRONE perché
indipendenti dall'ampiezza dell'oscillazione (avvengono cioè in uno stesso
tempo).
Galileo (secondo una leggenda) aveva
scoperto la legge dell’isocronismo usando come .. orologio il battito del suo
polso e come oscillatore un lampadario del duomo di Pisa.
lunedì 26 marzo 2018
Lo spettrometro di massa e gli isotopi
LO
SPETTROMETRO DI MASSA (Aston 1919)
Un fascetto di ioni positivi, proveniente
dal punto S, entra in una prima camera in cui sono presenti sia
un campo elettrico (fra le armature del condensatore), che un
campo magnetico ortogonale a quello elettrico e di verso
entrante nel video.
Questi due campi fanno passare dalla fenditura F soltanto
ioni aventi una stessa velocità (selettore
di velocità).
Infatti
se la forza elettrica
q*E e quella
magnetica B*q*v hanno la stessa intensità (e versi opposti), non verranno deviati solo quegli ioni la cui
velocità è tale che sia :
q*E = B*q*v , cioè se
: v = E / B.
Gli ioni che attraversano la fenditura F (aventi quindi una stessa velocità), entrano in una seconda camera, (anch'essa immersa in un campo magnetico, ortogonale al monitor e di verso entrante), e dopo aver descritto mezza circonferenza, per la forza di Lorentz), vanno a sbattere su una lastra fotografica.
Il raggio di curvatura : R =
m*v / ( B*q),
dipenderà dal rapporto m / q
fra la massa e la carica dello ione.
Sarà così possibile rivelare la presenza di
ioni di massa diversa (a parità di carica q). Le due camere sono sotto vuoto
spinto per evitare le deviazioni causate dagli urti fra ioni e molecole d'aria.
Lo spettrometro di massa fu inventato nel
1919, dal fisico inglese Aston. Con
questo apparecchio dimostrò che il comune cloro è in realtà una
miscela di due tipi diversi di atomi con proprietà chimiche identiche.
Il 75 %
degli atomi di cloro
impressionavano la lastra fotografica
in un punto corrispondente alla massa 35 e il 25 % in un altro punto corrispondente a massa 37.
Col suo strumento si esaminarono poi altri elementi e si scoprì così che la
maggior parte di essi è in realtà una miscela di due o più isotopi, come vengono chiamati gli elementi che nel
loro nucleo contengono lo stesso numero di protoni, ma un diverso numero di
neutroni.
Così
ad es. si scoprì che il 99.3 % dell'Uranio è costituito dall'isotopo 238,
mentre solo lo 0.7 %
è costituito dall'isotopo 235 che ha 3 neutroni in meno nel nucleo.
Entrambi
gli isotopi hanno lo stesso
numero di protoni (92), ma un diverso numero di neutroni.
IL CICLOTRONE : Acceleratore di particelle cariche.
IL CICLOTRONE DI LAWRENCE (1932)
Il ciclotrone, realizzato in America nel 1932, è un'ingegnosa apparecchiatura che permette di
accelerare protoni o elettroni, applicando loro per un gran numero di volte la stessa d.d.p. Vo,
per cui in ' n ' giri è come se lo ione fosse accelerato con una tensione di valore (n * Vo) .
La d.d.p. Vo è applicata fra i due conduttori di rame aventi la forma di due D, che sono le due
parti di una scatola cilindrica tagliata a metà nella zona diametrale.
Il tutto è sotto vuoto spinto ed è posto fra i poli di un potente elettromagnete.
All'interno delle D il campo elettrico è nullo e vi agisce soltanto il campo magnetico che fa in-
curvare la traiettoria.
Soltanto nel passare da una D all'altra, gli ioni subiscono l'azione della tensione Vo applicata
fra esse.
Ricordando che il raggio di curvatura : r = m * v / (B * q), si capisce che all'aumentare della
velocità ' v 'dello ione, aumenta anche il raggio di curvatura della traiettoria, per cui basta
cambiare il segno della d.d.p. Vo, in sincronia col passaggio dello ione da una D all'altra.
Ciò è possibile grazie al fatto che il tempo impiegato dal singolo ione per fare un giro non
dipende dal raggio della traiettoria, ma solo dal rapporto fra la carica e la massa dello ione e
dall'intensità del campo magnetico B.
Infatti si sa che il periodo T = 2*π * r / v ed essendo r = m*v / ( B*q), risulta :
T = 2*π*m / ( B*q)
Quindi la velocità aumenta in proporzione all'aumento del raggio dell'orbita.
Basterà quindi applicare alle due D del ciclotrone una tensione 'alternata' regolandone la
frequenza ad un valore tale che nel tempo impiegato dallo ione per descrivere mezza circon-
ferenza, si presenti nel corridoio, un campo elettrico concorde.
Lo ione farà così come il povero somaro che vede costantemente una carota davanti al muso
e per tentare di raggiungerla le corre dietro, in cerchio, e .. sempre più veloce.
°°°°°°
martedì 20 marzo 2018
COME VERIFICARE IN LABORATORIO LA LEGGE DI OHM
ANALOGIA IDRICA CON LA LEGGE DI OHM
Se si apre il rubinetto che mette in comunicazione due recipienti, il liquido si mette in movimento, finché c'è un dislivello.
Per ottenere una corrente di intensità costante è necessario mantenere un dislivello costante, (ad es. con un rubinetto che immette liquido da una parte ed un foro dall'altra).
Analogamente, per avere una corrente elettrica di intensità costante in un conduttore, basterà mantenere una d.d.p. costante ai suoi estremi.
Una pila, un accumulatore, o un alimentatore, sono capaci di mantenere una d.d.p. costante ai capi di un conduttore e quindi di mantenervi una corrente di intensità costante.
Per ora non è necessario sapere come funziona un generatore elettrico e basterà ricordare che nel polo positivo esso mantiene un difetto di elettroni e nel negativo, un eccesso.
Se fra questi due poli colleghiamo gli estremi di un conduttore, gli elettroni di conduzione di questo si metteranno in moto perché attratti dal polo positivo e respinti dal negativo.
Convenzionalmente si dice però che la corrente elettrica è costituita dal movimento di cariche positive, respinte dal polo positivo e attratte dal negativo, anche se è vero il contrario (perché gli elettroni sono stati scoperti successivamente).
oooooooo
VERIFICA SPERIMENTALE DELLA LEGGE DI OHM
Ecco il circuito di base (comune a molte esercitazioni). Prima si fa studiare alla lavagna.
Dal morsetto positivo dell’alimentatore si va col filo conduttore 1 all’estremo di sinistra del reostato, mentre si collega l’altro estremo al polo negativo dell’alimentatore col filo 2.
Con il filo 3 si va dal morsetto di sinistra ‘D‘ del reostato, all’ingresso positivo dell’amperometro.
Dal morsetto negativo dell’amperometro si va col filo 4 all’estremo di sinistra del conduttore Rx e l’altro estremo di Rx viene collegato al cursore del reostato col filo 5 in modo da poter variare la d.d.p ai capi di Rx.
Infine il voltmetro viene collegato con due conduttori (6 e 7) agli estremi di Rx per poter misurare le varie d.d.p. che verranno applicate variando di volta in volta la posizione del cursore del reostato. Per questo circuito sono necessari 7 conduttori con spinotti agli estremi.(Non si fanno saldature).
Ricordo che tutti gli anni lanciavo la sfida a montare questo circuito con gli occhi bendati e iniziava la lotta perché tutti se la sentivano di provare. Così acquistavano presto la sicurezza necessaria per montare un circuito elettrico (.. dopo, ma con gli occhi sempre ben aperti).
Lo scopo di questa esercitazione è quello di studiare come varia l’intensità della corrente nel conduttore R al variare della d.d.p. V applicata ai suoi estremi.
Prima di chiudere l'interruttore, raccomandavo di assicurarsi che il cursore del reostato fosse più vicino possibile al 'morsetto doppio D' (per non bruciare i due strumenti di misura).
Per questi raccomandavo di scegliere portate sovrabbondanti, da ridurre successivamente.
E' per l'analogia con le correnti liquide che al valore di questo rapporto si è dato il nome di 'resistenza elettrica' e si pone :
V / i = R.
In onore di chi scoprì questa legge, la resistenza elettrica si misura in Ohm (il cui simbolo è Ω)
1 Ω = 1 (V) / 1 (A).
Quindi ha la resistenza di 1 Ω, quel conduttore che, con la d.d.p. di 1 Volt agli estremi, viene attraversato dalla corrente di 1 Ampere.
sabato 17 marzo 2018
mercoledì 14 marzo 2018
COS'E' LA FORZA ELETTROMOTRICE DI UN GENERATORE?
COS’E’ LA FORZA ELETTROMOTRICE (f.e.m.) DI UN GENERATORE?
In Laboratorio potremo realizzare un' esercitazione per verificare
che la tensione fra i morsetti di un 'generatore', (accumulatore, pila, alimentatore), è
tanto minore, quanto maggiore è la corrente che eroga.
Se non siamo in laboratorio ce ne possiamo accorgere
se mettiamo in moto un'automobile
con i fari accesi.
Noteremo un'improvvisa diminuzione della loro luminosità dato che il motorino d'avviamento assorbe una
corrente piuttosto alta, per
fortuna solo per pochi secondi, (ed ... è meglio non insistere troppo).
Prima di mandare la corrente nel nostro circuito, si consiglia
di verificare :
1°) Che la portata del voltmetro non sia inferiore ai
12÷20 V (se l'accumulatore è da 12 V).
Che il reostato sia 'tutto inserito' (quindi con il cursore
spostato tutto a
sinistra) e che pos-
sa sopportare correnti fino a una decina di ampere. NON PORTARE IL CURSORE A DE-
STRA. Sarà più prudente utilizzare il reostato a potenziometro (come in quasi tutte le esercita-
zioni di Laboratorio).
3°) Che la portata dell'amperometro sia adeguata a queste
correnti. (tenerlo d’occhio durante
le misure per non bruciarlo).
Basterà misurare alcune coppie di valori di tensione e
corrente, spostando ogni volta il cur-
sore verso destra. (Così
facendo, l'accumulatore
risulta chiuso su
una resistenza minore
ed eroga una corrente maggiore).
Il massimo valore della tensione V(MN), si
misura 'a tasto aperto', quando
l'accumulatore
non eroga corrente
. Ed ecco il grafico di nostre vecchie misure.
V(N) - V(S) = i * r,
quindi si ha : V(S) - V(N) = - i * r.
Fra i punti M ed S c'è un generatore 'ideale' (che non
esiste, perché privo di resistenza interna).
La f.e.m. (leggi forza elettromotrice), è un antico nome improprio, perché non è una forza, ma la d.d.p. fra i morsetti di un generatore ideale (con
r=0), quindi : V(M) - V(S) = f.e.m.
Se sostituiamo le ultime relazioni nell'identità di
prima, avremo
V(M) - V(N) =
f.e.m. - i * r
E' questa la legge
di Ohm per un tratto di conduttore comprendente
un elemento attivo,
qual'è un
generatore che 'eroga corrente'.
Se i = 0 risulta : V (M) - V(N) = f.e.m. E' per questo che si definisce f.e.m. di un generatore
la d.d.p. fra i
suoi morsetti a 'CIRCUITO APERTO', quando cioè risulta : i = 0.
Il grafico che si ottiene in pratica, non è quasi mai
perfettamente rettilineo, perché la resisten-
za ' r ' varia al
variare della temperatura dell'elettrolita e la
f.e.m. può variare ...
Non sarà difficile capire che per caricare un accumulatore, sarà necessario che la corrente entri per il suo morsetto positivo e sarà necessario applicare una d.d.p. maggiore della sua f.e.m, per cui sarà :
Infatti V(M) - V(N) = [ V(M) - V(S)] +( [ V(S) - V(N) }
ed ora, a differenza di prima V(S) - V(N) è positiva perché la corrente va in quel verso. Il grafico precedente dovrà risultare in salita anziché in discesa.
Il morsetto positivo del generatore (carica batterie) che eseguirà la carica andrà collegato con il morsetto positivo dell'l'accumulatore da caricare (quindi IN OPPOSIZIONE), (come si fa con gli accumulatori di due vetture quando una delle due batterie non ce la fa più).
Il morsetto positivo del generatore (carica batterie) che eseguirà la carica andrà collegato con il morsetto positivo dell'l'accumulatore da caricare (quindi IN OPPOSIZIONE), (come si fa con gli accumulatori di due vetture quando una delle due batterie non ce la fa più).
ooooo
martedì 13 marzo 2018
domenica 11 marzo 2018
La Terza legge di Keplero spiega perché i pianeti più lontani dal Sole (o da una stella qualsiasi sono più lenti quanto più ne sono distanti
LA MASSA
DEL SOLE E LA TERZA
LEGGE DI KEPLERO
Per mezzo della Legge di Gravitazione
Universale, conoscendo la distanza dal Sole
e il perio-
do di
rivoluzione della Terra o di
uno qualsiasi dei pianeti del sistema solare, si può calco-
lare il valore della massa del Sole.
La formula finale ci farà trovare la Terza
legge di Keplero.
Basta
uguagliare la forza attrattiva da
parte del Sole
alla forza centrifuga che agisce sul
pianeta (nell'ipotesi che il moto del pianeta
sia circolare uniforme).
Se il pianeta è la Terra, sappiamo che il
raggio medio della sua orbita è di circa 150 milioni di
chilometri e il suo periodo T = 365 giorni, v = 2 * π * r / T.
(1) G *
M * m / r 2 = m * v 2 / r
si possono dividere entrambi i membri per ' m / r ' e si ottiene :
M = 4*π2* r 3 / ( G *T2
) =
2*1030
(kg)
Da quest'ultima
uguaglianza vediamo che
per tutti i pianeti che ruotano intorno al Sole o
ad un’altra stella qualsiasi, i cubi dei
semiassi maggiori delle
orbite sono proporzionali ai
quadrati dei loro periodi di rivoluzione.
r 3
/ T 2 = G * M /
4 * π 2 = costante per ogni dato M.
TuttI i pianeti più distanti dal Sole hanno semiassi
maggiori e periodi
maggiori, quindi sono
più lenti.
Conoscendo il raggio dell'orbita lunare
(384400 km) ed il periodo di rivoluzione della Luna
(27,32 giorni), la stessa equazione
consente di calcolare la massa M della Terra, invece di quel-
la del Sole.
Dalla (1) si ricava la velocità del pianeta del sistema solare o dei satelliti artificiali della Terra.
Da questa formula possiamo ad es. dedurre che la velocità di un satellite in un'orbita di raggio quadruplo dev'essere la metà di quella di un satellite di raggio 1/4 ed infatti, in base alla Legge di Keplero avevamo detto che quelli più lontani hanno periodi più lunghi e quindi sono più lenti.
ooooo
Iscriviti a:
Post (Atom)